UNIT 3: CO-ORDINATE GEOMETRY

CHAPTER

Syllabus

> Review : Concepts of co-ordinate geometry, graphs of linear equations. Distance formula. Section formula (internal division). Area of a triangle.

Trend Analysis						
List of Concepts	2018		2019		2020	
	Delhi	Outside Delhi	Delhi	Outside Delhi	Delhi	Outside Delhi
Distance between two points and section formula	$\begin{aligned} & 1 \text { Q (2 M) } \\ & 1 \text { Q (3 M) } \end{aligned}$		$\begin{aligned} & 1 Q(1 M) \\ & 1 Q(3 M) \end{aligned}$	1 Q (3 M)	$\begin{aligned} & 2 \text { Q (1 M) } \\ & 1 \text { Q (3 M) } \end{aligned}$	$\begin{aligned} & 3 \text { Q (1 M) } \\ & 1 \text { Q (3 M) } \\ & 1 \text { Q (4 M) } \end{aligned}$
Area of a Triangle	1 Q (3 M)		2 Q (3 M)		$\begin{aligned} & \hline 1 Q(1 M) \\ & 1 Q(3 M) \end{aligned}$	$1 Q(3 \mathrm{M})$

TOPIC - 1

Distance between two points and
Section formula

E Revision Notes

$>$ Two perpendicular number lines intersecting at origin are called co-ordinate axes. The horizontal line is the X -axis (denoted by $\mathrm{X}^{\prime} \mathrm{OX}$) and the vertical line is the Y -axis (denoted by $\mathrm{Y}^{\prime} \mathrm{OY}$).

$>$ The point of intersection of X -axis and Y -axis is called origin and denoted by O .
$>$ Cartesian plane is a plane obtained by putting the co-ordinate axes perpendicular to each other in the plane. It is also called co-ordinate plane or XY-plane.
$>$ The x-co-ordinate of a point is its perpendicular distance from Y -axis.
$>$ The y-co-ordinate of a point is its perpendicular distance from X -axis.
> The point where the X -axis and the Y -axis intersect has co-ordinate point $(0,0)$.
$>$ The abscissa of a point is the x-co-ordinate of the point.
$>$ The ordinate of a point is the y-co-ordinate of the point.
$>$ If the abscissa of a point is x and the ordinate of the point is y, then (x, y) is called the co-ordinates of the point.
$>$ The axes divide the Cartesian plane into four parts called the quadrants (one fourth part), numbered I, II, III and IV anti-clockwise from OX.
$>$ The co-ordinates of a point on the X -axis are of the form $(x, 0)$ and that of the point on Y -axis are $(0, y)$.
$>$ Sign of co-ordinates depicts the quadrant in which it lies. The co-ordinates of a point are of the form $(+,+)$ in the first quadrant, $(-,+)$ in the second quadrant, $(-,-)$ in the third quadrant and $(+,-)$ in the fourth quadrant.
$>$ Three points A, B and C are collinear if the distances AB, BC and CA are such that the sum of two distances is equal to the third.
$>$ Three points A, B and C are the vertices of an equilateral triangle if $A B=B C=C A$.
$>$ The points A, B and C are the vertices of an isosceles triangle if $A B=B C$ or $B C=C A$ or $C A=A B$.
$>$ Three points A, B and C are the vertices of a right triangle, if $A B^{2}+B C^{2}=C A^{2}$.

$>$ For the given four points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D :

1. If $A B=B C=C D=D A ; A C=B D$, then $A B C D$ is a square.
2. If $A B=B C=C D=D A ; A C \neq B D$, then $A B C D$ is a rhombus.
3. If $A B=C D, B C=D A ; A C=B D$, then $A B C D$ is a rectangle.
4. If $A B=C D, B C=D A ; A C \neq B D$, then $A B C D$ is a parallelogram.
$>$ Diagonals of a square, rhombus, rectangle and parallelogram always bisect each other.
$>$ Diagonals of rhombus and square bisect each other at right angle.
$>$ All given points are collinear, if the area of the obtained polygon is zero.
$>$ Three given points are collinear, if the area of triangle is zero.
$>$ Centroid is the point of intersection of the three medians of a triangle. In the figure, G is the centroid of a triangle ABC .

$>$ Centroid divides each median of a triangle in a ratio of $2: 1$ from vertex to base of the side.
$>$ If $x \neq y$, then $(x, y) \neq(y, x)$ and if $(x, y)=(y, x)$, then $x=y$.
$>$ To plot a point $\mathrm{P}(3,4)$ in the cartesian plane.
(i) A distance of 3 units along X -axis.
(ii) A distance of 4 units along Y -axis.

Know the Formulae

The distance between two points i.e., $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ is

$$
d=\left|\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right|
$$

$>$ The distance of a point $\mathrm{P}(x, y)$ from origin is $\sqrt{x^{2}+y^{2}}$
$>$ Co-ordinates of point (x, y) which divides the line segment by joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the ratio $m: n$ internally are

$$
x=\left(\frac{m x_{2}+n x_{1}}{m+n}\right) \text { and } y=\left(\frac{m y_{2}+n y_{1}}{m+n}\right)
$$

$>$ Co-ordinates of mid-point of the line segment by joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are

$$
x=\left(\frac{x_{2}+x_{1}}{2}\right) \text { and } y=\left(\frac{y_{2}+y_{1}}{2}\right)
$$

Know the Facts

$>$ Co-ordinate geometry is the system of geometry where the position of points on the plane is described using an ordered pair of numbers.
> Cartesian plane was discovered by Rene Descartes.
$>$ The other name of co-ordinate geometry is Analytical Geometry.
$>$ Co-ordinate Geometry acts as a bridge between the Algebra and Geometry.
$>$ Medians of a triangle are concurrent. The point of concurrency is called the centroid.
$>$ Trisection of a line segment means dividing it into 3 equal parts, so 2 points are required.
$>$ Centroid of a triangle divides its median in the ratio of $2: 1$.

How is it done on the GREENBOARD?

Q.l. Find the point of trisection of the line segment joining the points ($5,-6$) and ($-7,5$).

Solution

Step I: Diagrammatic representation.

A	$\left.x_{1} y_{1}\right)$	$\left(x_{2}, y_{2}\right)$	B
$(5,-6)$	P	Q	$(-7,5)$

Points of trisections divides line segment into three equal parts.
i.e.,

$$
A P=P Q=Q B
$$

Step II: The ratio of $\mathrm{AP}: \mathrm{PQ}: \mathrm{QB}=1$: 1 : 1

$$
\text { or, } \quad \frac{A P}{P B}=\frac{1}{2} \text { and } \frac{A Q}{Q B}=\frac{2}{1}
$$

Step III: finding co-ordinates of P using section formula.

$$
1: 2
$$

$$
\begin{aligned}
& x_{1}=\frac{1(-7)+2(5)}{1+2}=\frac{3}{3}=1 \\
& y_{1}=\frac{1(5)+2(-6)}{1+2}=\frac{-7}{3}
\end{aligned}
$$

$\therefore P\left(x_{1}, y_{1}\right)$ is $\left(1, \frac{-7}{3}\right)$.
Step IV: Finding co-ordinates of Q using section formula

2: 1

$$
x_{2}=\frac{2(-7)+1(5)}{2+1}=\frac{-9}{3}=-3
$$

$$
y_{2}=\frac{2(5)+1(-6)}{2+1}=\frac{4}{3}
$$

$$
\therefore Q\left(x_{2}, y_{2}\right) \text { is }\left(-3, \frac{4}{3}\right) \text {. }
$$

Very Short Answer Type Questions

1 mark each

[AI) Q. 1. In which quadrant lies the point which divides the line segment joining the points $(8,-9)$ and $(2,3)$ in ratio $1: 2$ internally?

U [CBSE SQP, 2020]
Sol. IV quadrant.
[CBSE SQP Marking Scheme, 2020]

Detailed Solution:

$$
\begin{aligned}
& \begin{array}{ll}
\mathrm{A}\left(8^{\prime}, 9\right) & \mathrm{P}(x, y) \\
m=1, n=2
\end{array} \\
& \text { Given, } \mathrm{B}(2,3) \\
&\left(x_{1}, y_{1}\right)=(8,-9) \\
&\left(x_{2}, y_{2}\right)=(2,3) \\
&(x, y)=\left[\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right] \\
&(x, y)=\left[\frac{1 \times 2+2 \times 8}{1+2}, \frac{1 \times 3+2 \times(-9)}{1+2}\right] \\
&(x, y)=\left[\frac{2+16}{3}, \frac{3-18}{3}\right] \\
&(x, y)=\left[\frac{18}{3}, \frac{-15}{3}\right] \\
&(x, y)=(6,-5)
\end{aligned}
$$

Hence, the point $(6,-5)$ lies in IV quadrant.
[AI] Q. 2. Find the distance between the points $(a \cos \theta+b \sin \theta, 0)$ and $(0, a \sin \theta-b \cos \theta)$.

A [CBSE Delhi Set-I, 2020]
Sol. Here, $x_{1}=a \cos \theta+b \sin \theta, y_{1}=0$

$$
\text { and } x_{2}=0, y_{2}=a \sin \theta-b \cos \theta
$$

$\therefore \quad$ Distance $=\left|\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right|$

$$
\begin{aligned}
& =\left|\sqrt{(0-a \cos \theta-b \sin \theta)^{2}+(a \sin \theta-b \cos \theta-0)^{2}}\right| \\
& =\left|\sqrt{(-1)^{2}(a \cos \theta+b \sin \theta)^{2}+(a \sin \theta-b \cos \theta)^{2}}\right| \\
& =\mid \sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta+2 a b \cos \theta \sin \theta}+ \\
& =\left|\sqrt{a^{2} \sin ^{2} \theta+b^{2} \sin ^{2} \theta+\cos ^{2} \theta-2 a b \sin \theta \cos \theta}\right| \\
& =\left|\sqrt{a^{2} \times 1+b^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}\right| \\
& =\left|\sqrt{a^{2}+b^{2}}\right| \text { unit }
\end{aligned}
$$

(AI) Q. 3. If the point $\mathrm{P}(k, 0)$ divides the line segment joining the points $A(2,-2)$ and $B(-7,4)$ in the ratio $1: 2$, then find the value of k.

A [CBSE Delhi Set-I, 2020]
Sol.

$$
\begin{array}{ll}
\therefore & k=\frac{1(-7)+2(2)}{1+2} \\
& \quad\left[\because x=\frac{m x_{2}+n x_{1}}{m+n}\right] \\
\Rightarrow & k=\frac{-7+4}{3} \\
\Rightarrow & 3 k=-3 \\
\Rightarrow & k=-1 .
\end{array}
$$

(AI) Q. 4. The point P on X-axis equidistant from the points $A(-1,0)$ and $B(5,0)$.

A [CBSE OD Set-I, 2020]
Sol. Let the position of the point P on X -axis be $(x, 0)$, then

$$
\begin{aligned}
& P A^{2}=P B^{2} \\
& \Rightarrow \quad(x+1)^{2}+(0)^{2}=(5-x)^{2}+(0)^{2} \quad 1 / 2 \\
& \Rightarrow \quad x^{2}+2 x+1=25+x^{2}-10 x \\
& \Rightarrow \quad 2 x+10 x=25-1 \\
& \Rightarrow \quad 12 x=24 \\
& \Rightarrow \quad x=2
\end{aligned}
$$

Hence, the point $\mathrm{P}(x, 0)$ is $(2,0)$.
$1 / 2$
Q.5. Find the co-ordinates of the point which is reflection of point $(-3,5)$ in X-axis.

A [CBSE OD Set-I, 2020]
Sol. By using the graph of coordinate plane, we have the reflection of point $(-3,5)$ is x-axis is $(-3,-5) .1 / 2$

Q. 6. If the point $P(6,2)$ divides the line segment joining $A(6,5)$ and $B(4, y)$ in the ratio $3: 1$, then the value of y.

A [CBSE OD Set-I, 2020]

Sol. Here, $\quad x_{1}=6, y_{1}=5$

and

$$
x_{2}=4, y_{2}=y
$$

Then $\quad x=\frac{m x_{2}+n x_{1}}{m+n}$ and $y=\frac{m y_{2}+n y_{1}}{m+n} \quad 1 / 2$
$\therefore \quad 2=\frac{3 \times y+1 \times 5}{3+1}=\frac{3 y+5}{4}$
$\Rightarrow \quad 3 y+5=8$
$\Rightarrow \quad 3 y=8-5=3$
$\Rightarrow \quad y=1$.
$\boxed{A l} \mid \mathrm{Q}$. 7. Find the coordinates of a point A , where AB is diameter of a circle whose centre is $(2,-3)$ and B is the point $(1,4)$. A [CBSE Delhi Set-I, II, III, 2019]

Sol. Let the point A be (x, y)

$$
\begin{aligned}
& \therefore \\
& \Rightarrow \quad \frac{x+1}{2}=2 \text { and } \frac{4+y}{2}=-3 \\
& \therefore \text { Point } A \text { is }(3,-10)
\end{aligned}
$$

[CBSE Marking Scheme, 2019]

Detailed Solution:
Since, AB is the diameter, center C must be the mid point of the diameter $A B$.

Let the co-ordinates of point A be (x, y).

$$
\begin{array}{ll}
x \text {-coordinate of } & C=\frac{x+1}{2} \\
\Rightarrow & 2=\frac{x+1}{2} \\
\Rightarrow & 4=x+1 \\
\Rightarrow & x=3 \\
\text { and } y \text {-coordinate of } & C=\frac{y+4}{2} \\
\Rightarrow & -3=\frac{y+4}{2} \\
\Rightarrow & -6=y+4 \\
\Rightarrow & y
\end{array}
$$

Hence, coordinates of point A is $(3,-10)$.
Q. 8. The distance between point $A(5,-3)$ and $B(13, m)$ is 10 units. Calculate the value of m.
[CBSE Delhi Board term, 2019]

Ho mp

Topper Answer, 2019

Sol.

$A B=1$ units
Using distance formula;
$\sqrt{(13-5)^{2}+(m+3)^{2}}=10$
an squaring;
$8^{2}+(m+3)^{2}=100$
$\Rightarrow(m+3)^{2}=100-64$
$\Rightarrow \sqrt{(m+3)^{2}}=\sqrt{36}$
$\Rightarrow \quad(m+3)= \pm 6$
considering only positive palue;
$m=6-3$
$\Rightarrow m=3$
Q. 9. Find the value of a, for which point $P\left(\frac{a}{3}, 2\right)$ is the midpoint of the line segment joining the points $Q(-5,4)$ and $R(-1,0)$.

A [CBSE SQP, 2018]
Sol. $\quad\left(\frac{-5+(-1)}{2}, \frac{4+0}{2}\right)=\left(\frac{a}{3}, 2\right)$

$$
\begin{equation*}
\frac{a}{3}=\frac{-6}{2} \Rightarrow a=-9 \tag{1}
\end{equation*}
$$

[CBSE Marking Scheme, 2018]
Detailed Solution:

P is the mid-point of $Q R$
or,
$\frac{a}{3}=\frac{-5+(-1)}{2}$
or,

$$
\frac{a}{3}=\frac{-6}{2}
$$

or,

$$
a=-9
$$

Q. 10. $A(5,1), B(1,5)$ and $C(-3,-1)$ are the vertices of $\triangle A B C$. Find the length of median $A D$.

U [CBSE Compt. Set-I,II,IIII, 2018]
Sol. Coordinates of D are $(-1,2)$
$A D=\sqrt{(5+1)^{2}+(1-2)^{2}}=\sqrt{37}$ unit
[CBSE Marking Scheme, 2018]
Detailed Solution:

Here D is the mid-point of BC .
Then, the coordinates of D

$$
\begin{aligned}
& =\left(\frac{1-3}{2}, \frac{5-1}{2}\right)=(-1,2) \quad 1 / 2 \\
\therefore \quad A D & =\left|\sqrt{(5+1)^{2}+(1-2)^{2}}\right| \\
& =|\sqrt{36+1}|=|\sqrt{37}|
\end{aligned}
$$

Hence, the length of AD is $\sqrt{37}$ unit.
$1 / 2$
Q.11. If the distance between the points $(4, k)$ and $(1,0)$ is 5 , then what can be the possible values of k ?

U [Delhi Set I, II, III, 2017]
Sol. Using distance formula,

$$
\left|\sqrt{(4-1)^{2}+(k-0)^{2}}\right|=5
$$

or, $\quad 3^{2}+k^{2}=25$

$$
k= \pm 4
$$

[CBSE Marking Scheme, 2017]

Short Answer Type Questions-I

2 marks each

AI] Q. 1. Find the point on X -axis which is equidistant from the points $(2,-2)$ and $(-4,2)$.

U [CBSE SQP, 2020-21]
Sol. Let $\mathrm{P}(x, 0)$ be a point on x-axis

$$
\begin{align*}
P A & =P B \\
P A^{2} & =P B^{2} \\
(x-2)^{2}+(0+2)^{2} & =(x+4)^{2}+(0-2)^{2} \\
x^{2}+4-4 x+4 & =x^{2}+16+8 x+4 \\
-4 x+4 & =8 x+16 \\
x & =-1
\end{align*}
$$

$1 / 2$
$1 / 2$
[AI Q. 2. P $(-2,5)$ and $Q(3,2)$ are two points. Find the coordinates of the point R on PQ such that $P R=2 Q R$.

A [CBSE SQP, 2020-21]
$1 / 2$

$$
\begin{align*}
& \text { Sol. } \begin{aligned}
& P R: Q R=2: 1 \\
& R(x, y)=\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right) \\
& R\left(\frac{1(-2)+2(3)}{2+1}, \frac{1(5)+2(2)}{2+1}\right) \\
& R\left(\frac{4}{3}, 3\right) .
\end{aligned}
\end{align*}
$$$1 / 2$

\square

Hence co-ordinate of required point are $(-1,0)$.

Detailed Solution:
Given two points: $\mathrm{P}(-2,5)$ and $\mathrm{Q}(3,2)$
Here,

$$
x_{1}=-2, x_{2}=3
$$

and

$$
y_{1}=5, \quad y_{2}=2
$$

and also given, $P R=2 Q R$

$$
\begin{array}{lr}
\Rightarrow & \frac{P R}{Q R}=\frac{2}{1} \\
\Rightarrow & P R: Q R=2: 1
\end{array}
$$

Then $R(x, y)=\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$

$$
\begin{aligned}
& =\left(\frac{2 \times 3+1 \times(-2)}{2+1}, \frac{2 \times 2+1 \times 5}{2+1}\right) \\
& =\left(\frac{6-2}{3}, \frac{4+5}{3}\right) \\
& =\left(\frac{4}{3}, \frac{9}{3}\right)=\left(\frac{4}{3}, 3\right)
\end{aligned}
$$

$1 / 2$
Q. 3. In parallelogram $\operatorname{ABCD}, \mathrm{A}(3,1), \mathrm{B}(5,1) \mathrm{C}(a, b)$ and $\mathrm{D}(4,3)$ are the vertices. Find vertex $\mathrm{C}(a, b)$.

Topper Answer, 2019

Sol.

diagonals of a parallelogram bisect each other.
\therefore Dis the midpoint of both $A C$ and $B D$.
Using section formula for smid-point. on cs,

Q. 4. Find the coordinates of the point P which divides the join of $A(-2,5)$ and $B(3,-5)$ in the ratio $2: 3$.

A [CBSE SQP, 2018]

Sol. Let

$$
\begin{aligned}
& x=\frac{6-6}{5}=0 \\
& y=\frac{-10+15}{5}=1
\end{aligned}
$$

[CBSE Marking Scheme, 2018]
Detailed Solution:

Since,

$$
x=\frac{m x_{2}+n x_{1}}{m+n}
$$

and

$$
y=\frac{m y_{2}+n y_{1}}{m+n}
$$

and

$$
\begin{aligned}
& x=\frac{2 \times 3+3 \times(-2)}{2+3}=0 \\
& y=\frac{2 \times(-5)+3 \times 5}{2+3}=\frac{5}{5}=1 \quad 1 / 2
\end{aligned}
$$

So, the point is $(0,1)$.
Q. 5. Find the ratio in which $\mathrm{P}(4, m)$ divides the line segment joining the points $A(2,3)$ and $B(6,-3)$. Hence find m. C + A [CBSE Delhi/OD Set-2018]

Sol. $\underset{(2,3)}{\mathrm{A} \longleftarrow} \mathrm{k} \underset{\mathrm{P}(4, m)}{ } \quad \mathrm{B} \quad \underset{(6,-3)}{\longrightarrow}$ B

$$
A P: P B=k: 1
$$

$$
\frac{6 k+2}{k+1}=4
$$

$\Rightarrow \quad k=1$, ratio is $1: 1$
Hence $m=\frac{-3+3}{2}=0$ $1 / 2$
[CBSE Marking Scheme, 2018]
Detailed Solution:

[AI Q. 6. If $\left(1, \frac{p}{3}\right)$ is the mid point of the line segment joining the points $(2,0)$ and $\left(0, \frac{2}{9}\right)$, then show that the line $5 x+3 y+2=0$ passes through the point ($-1,3 p$).

A [CBSE SQP, 2017]

Sol. Since $\left(1, \frac{p}{3}\right)$ is the mid point of the line segment joining the points $(2,0)$ and $\left(0, \frac{2}{9}\right)$.

$$
\begin{aligned}
\therefore \quad \frac{p}{3} & =\frac{0+\frac{2}{9}}{2}=\frac{2 p}{3}=\frac{2}{9} \\
p & =\frac{1}{3}
\end{aligned}
$$

Hence, the line $5 x+3 y+2=0$, passes through the point $(-1,1)$ as $5(-1)+3(1)+2=0$.
[CBSE Marking Scheme, 2017]
Q.7. In what ratio does the point $\mathrm{P}(-4,6)$ divide the line segment joining the points $A(-6,10)$ and B(3, -8) ? A [Delhi Comptt. Set-I, II, III 2017]

Sol. Let

$$
A P: P B=k: 1
$$

$\therefore \quad \frac{3 k-6}{k+1}=-4$

$$
\begin{aligned}
\text { or, } & & 3 k-6 & =-4 k-4 \\
& & 7 k & =2 \\
& & & =\frac{2}{7}
\end{aligned}
$$

Hence,

$$
A P: P B=2: 7
$$

[CBSE Marking Scheme, 2017]
Q. 8. If the line segment joining the points $A(2,1)$ and $B(5,-8)$ is trisected at the points P and Q, find the coordinates P.

A [Outside Delhi Comptt. Set-I, III, 2017]
Sol. $\begin{array}{llll}\text { A } & \text { 1 } 1) & \text { P } & \text { Q } \\ (5,-8)\end{array}$
Let $\mathrm{P}(x, y)$ divides AB in the ratio $1: 2$.
\therefore Using section formula
and

$$
\begin{align*}
& x=\frac{1 \times 5+2 \times 2}{1+2}=3 \\
& y=\frac{1 \times-8+2 \times 1}{1+2}=-2 \tag{1}
\end{align*}
$$

Hence coordinates of P are $(3,-2)$.
Q. 9. If the distances of $P(x, y)$ from $A(5,1)$ and $B(-1,5)$ are equal, then prove that $3 x=2 y$.

U [CBSE OD, Set-II, 2017, 2015]

Topper Answer, 2017

Sol.

Q. 10. A line intersects the Y-axis and X-axis at the points P and Q respectively. If $(2,-5)$ is the mid-point of $P Q$, then find the coordinates of P and Q.

U [CBSE OD, Set-III, 2017]

Q.11. The x-coordinate of a point P is twice its y-coordinate. If P is equidistant from $Q(2,-5)$ and $R(-3,6)$, find the co-ordinates of P.

U [CBSE, Delhi Set I, II, III, 2016]
Sol. Let the point P be $(2 y, y)$
Given,
$P Q=P R$
or, $\left|\sqrt{(2 y-2)^{2}+(y+5)^{2}}\right|=\left|\sqrt{(2 y+3)^{2}+(y-6)^{2}}\right|^{1 / 2}$
Solving to get $y=8$
Hence, coordinates of point P are $(16,8)$. 1/2
[CBSE Marking Scheme, 2016]

Detailed Solution:

Let the point P be $(2 y, y)$
Given,

$$
P Q=P R
$$

or, $\left|\sqrt{(2 y-2)^{2}+(y+5)^{2}}\right|=\left|\sqrt{(2 y+3)^{2}+(y-6)^{2}}\right|_{1 / 2}$
Squaring both sides

$$
\begin{align*}
& 4 y^{2}-8 y+4+y^{2}+25+10 y \\
& \\
& \\
& \text { or, } \quad 4 y^{2}+12 y+9+y^{2}+36-12 y \\
& \text { or } \quad 2 y=16 \text { or } y=8
\end{align*}
$$

Hence, coordinates of point P are $(16,8)$.
Q .12. Find the ratio in which Y -axis divides the line segment joining the points $A(5,-6)$ and $B(-1,-4)$. Also find the co-ordinates of the point of division. A [CBSE, Delhi Set I, II, III, 2016]

Sol. Let the point on y-axis be $(0, y)$ and $A P: P B=k: 1$.

Therefore $\frac{5-k}{k+1}=0$ gives $k=5$
Hence, required ratio is $5: 1$

$$
y=\frac{-4(5)-6}{6}=\frac{-13}{3}
$$

Hence, point on Y-axis is $\left(0, \frac{-13}{3}\right)$.
[CBSE Marking Scheme, 2016]
[AI) Q. 13. If the point $\mathrm{P}(x, y)$ is equidistant from the points $\mathrm{Q}(a+b, b-a)$ and $\mathrm{R}(a-b, a+b)$, then prove that $b x=a y$.
[OD, Set I, II, III, 2016]
A [CBSE SQP, 2016]
Sol.

$$
\begin{gathered}
|P Q|=|P R| \\
\left|\sqrt{[x-(a+b)]^{2}+[y-(b-a)]^{2}}\right| \\
=\left|\sqrt{[x-(a-b)]^{2}+[y-(b+a)]^{2}}\right|
\end{gathered}
$$

Squaring, we get
$[x-(a+b)]^{2}+[y-(b-a)]^{2}$
or, $[x-a-b]^{2}-[x-a+b]^{2}$

$$
=(y-a-b)^{2}-(y-b+a)^{2}
$$

or, $(x-a-b+x-a+b)(x-a-b-x+a-b)$

$$
=(y-a-b+y-b+a)(y-a-b-y+b-a)
$$

or, $\quad(2 x-2 a)(-2 b)=(2 y-2 b)(-2 a)$
or,

$$
(x-a) b=(y-b) a
$$

or, $\quad b x=a y . \quad$ Hence proved. 1
[CBSE Marking Scheme, 2016]
Q. 14. Prove that the point $(3,0),(6,4)$ and $(-1,3)$ are the vertices of a right angled isosceles triangle.

U [CBSE, OD Set I, II, III, 2016]
Sol. Let $A(3,0), B(6,4)$ and $C(-1,3)$
$\therefore A B^{2}=(3-6)^{2}+(0-4)^{2}=9+16=25 \quad 1 / 2$ $B C^{2}=(6+1)^{2}+(4-3)^{2}=49+1=50 \quad 1 / 2$
and $C A^{2}=(-1-3)^{2}+(3-0)^{2}=16+9=25 \quad 1 / 2$ $A B^{2}=C A^{2}$ or, $A B=C A$
\therefore Triangle is isosceles.

$$
25+25=50
$$

Also,

$$
A B^{2}+C A^{2}=B C^{2}
$$

Since, Pythagoras theorem is verified, therefore triangle is a right angled triangle.
[CBSE Marking Scheme, 2016]
Q. 15. If the mid-point of the line segment joining $\mathrm{A}\left[\frac{x}{2}, \frac{y+1}{2}\right]$ and $\mathrm{B}(x+1, y-3)$ is $\mathrm{C}(5,-2)$, find x, y.

U [CBSE Board Term-2, 2016]

Sol.

$$
\text { At mid-point of } A B=\left(\frac{\frac{x}{2}+x+1}{2}\right)=5
$$

or,

$$
x=6
$$

$$
\begin{gathered}
\left(\begin{array}{c}
\left.\frac{\frac{y+1}{2}+y-3}{2}\right)=-2 \\
y+1+2 y-6=-8
\end{array}\right. \\
\quad y+1
\end{gathered}
$$

or,

$$
y=-1 . \quad 1
$$

[CBSE Marking Scheme, 2016]
Q. 16. If $A(5,2), B(2,-2)$ and $C(-2, t)$ are the vertices of a right angled triangle with $\angle B=90^{\circ}$, then find the value of t.

U [CBSE Board, 2015]
Sol. $A B^{2}=(2-5)^{2}+(-2-2)^{2}=9+16=25$
$B C^{2}=(-2-2)^{2}+(t+2)^{2}=16+(t+2)^{2}$
$A C^{2}=(5+2)^{2}+(2-t)^{2}=49+(2-t)^{2}$

Since, $\triangle \mathrm{ABC}$ is a right angled triangle.

$$
\therefore \quad A C^{2}=A B^{2}+B C^{2}
$$

$$
\left.\begin{array}{lrl}
\text { or, } & 49+(2-t)^{2} & =25+16+(t+2)^{2} \\
\text { or, } & 49+4-4 t+t^{2} & =41+t^{2}+4 t+4 \\
\text { or, } & 53-4 t & =45+4 t \\
\text { or, } & & 8 t
\end{array}\right)=8
$$

$$
\begin{equation*}
\therefore \quad t=1 \tag{1}
\end{equation*}
$$

[CBSE Marking Scheme, 2015]
Q. 17. Show that the points $(a, a),(-a,-a)$ and $(-\sqrt{3} a, \sqrt{3} a)$ are the vertices of an equilateral triangle.

U [Foreign Set I, II, III, 2015]
Sol. Let $\mathrm{A}(a, a), \mathrm{B}(-a,-a)$ and $\mathrm{C}(-\sqrt{3} a, \sqrt{3} a)$
Here, $A B=\left|\sqrt{(a+a)^{2}+(a+a)^{2}}\right|=2 \sqrt{2} a$ unit $\quad 1 / 2$

$$
\begin{align*}
& \begin{aligned}
& B C=\left|\sqrt{(-a+\sqrt{3} a)^{2}+(-a-\sqrt{3} a)^{2}}\right| \\
&=\left|\sqrt{a^{2}+3 a^{2}-2 \sqrt{3} a^{2}+a^{2}+2 \sqrt{3} a^{2}+3 a^{2}}\right|
\end{aligned} \\
& =\sqrt{8 a^{2}}=2 \sqrt{2} a \text { unit } \\
& \text { and } A C=\left|\sqrt{(a+\sqrt{3} a)^{2}+(a-\sqrt{3} a)^{2}}\right| \\
& \begin{aligned}
\left|\sqrt{a^{2}+3 a^{2}+2 \sqrt{3} a^{2}+a^{2}+3 a^{2}-2 \sqrt{3} a^{2}}\right| & =8 a^{2}
\end{aligned} \\
& \quad=2 \sqrt{2} a \text { unit }
\end{align*}
$$

Since $A B=B C=A C$, therefore ABC is an equilateral triangle.
$1 / 2$
[CBSE Marking Scheme, 2015]

Short Answer Type Questions-II

AI Q. 1. If the point $C(-1,2)$ divides internally the line segment joining $A(2,5)$ and $B(x, y)$ in the ratio $3: 4$, find the coordinates of B.

Sol. By using section formula,

$$
\begin{aligned}
& \stackrel{\mathrm{A}(2,5)}{ } \quad \mathrm{C}(-1,2) \quad \mathrm{B}(x, y) \\
&-1=\frac{1 / 2}{m+n} \\
&=\frac{3 \times x+4 \times 2}{3+4}=\frac{3 x+8}{7} \quad 1 / 2
\end{aligned}
$$

$$
\Rightarrow \quad 3 x+8=-7
$$

$$
\begin{array}{lrl}
\Rightarrow & 3 x & =-15 \\
\Rightarrow & x & =-5 \\
\text { and } & 2 & =\frac{m y_{2}+n y_{1}}{m+n} \\
& & =\frac{3 \times y+4 \times 5}{3+4}=\frac{3 y+20}{7} \\
& 1 / 2 \\
\Rightarrow & 3 y+20 & =14 \\
\Rightarrow & 3 y & =14-20=-6 \\
\Rightarrow & y & =-2
\end{array}
$$

Hence, the coordinates of $B(x, y)$ is $(-5,-2)$. $1 / 2$
[AI I Q . 2. If the mid-point of the line segment joining the points $\mathrm{A}(3,4)$ and $\mathrm{B}(k, 6)$ is $\mathrm{P}(x, y)$ and $x+y-10=0$, find the value of k. A $+\square$ [CBSE, OD Set-I, 2020]
Sol. Since, the mid point of A and B is P,

and

$$
\begin{equation*}
y=\frac{4+6}{2}=\frac{10}{2}=5 \tag{1}
\end{equation*}
$$

Also, given, $x+y-10=0$
Substituting the value of $x=\frac{3+k}{2}$ and $y=5$, we get
$\Rightarrow \quad \frac{3+k}{2}+5-10=0$
$\Rightarrow \quad \frac{3+k}{2}=5$
$\Rightarrow \quad 3+k=10$
$\Rightarrow \quad k=10-3=7$.
Hence, the value of k is 7 .
1
AI Q. 3. The line segment joining the points $A(2,1)$ and $B(5,-8)$ is trisected at the points P and Q such that P is nearer to A. If P also lies on the line given by $2 x-y+k=0$, find the value of k.

A [CBSE Delhi Set-I, II, III, 2019]
Sol.

$$
A P: P B=1: 2
$$

$x=\frac{4+5}{3}=3$ and $y=\frac{2-8}{3}=-2 \quad 1 / 2+1 / 2$
Thus point P is $(3,-2)$.
Point $(3,-2)$ lies on $2 x-y+k=0$
$\Rightarrow \quad 6+2+k=0$
$\Rightarrow \quad k=-8$.
1
[CBSE Marking Scheme, 2019]
Detailed Solution:

The given points are $A(2,1)$ and $B(5,-8)$.
Given, P and Q trisects the line segment $A B$

$$
\begin{aligned}
\therefore \quad A P & =P Q=Q B \\
P B & =P Q+Q B=A P+A P=2 A P \\
A P: P B & =A P: 2 A P=1: 2
\end{aligned}
$$

$\therefore \mathrm{P}$ divides the line segment AB in the ratio $1: 2$.
We know that, coordinates of the point dividing the line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the ratio $m: n$ is given by $\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$.
\therefore Coordinates of P

$$
\begin{aligned}
& =\left(\frac{1 \times 5+2 \times 2}{1+2}, \frac{1 \times(-8)+2 \times 1}{1+2}\right) \\
& =\left(\frac{5+4}{3}, \frac{-8+2}{3}\right) \\
& =\left(\frac{9}{3}, \frac{-6}{3}\right)=(3,-2)
\end{aligned}
$$

Point $\mathrm{P}(3,-2)$ lies on the given line $2 x-y+k=0$

$$
\begin{aligned}
\therefore & 2 \times 3-(-2)+k & =0 \\
\Rightarrow & 6+2+k & =0 \\
\Rightarrow & 8+k & =0 \\
\Rightarrow & k & =-8
\end{aligned}
$$

Thus, the value of k is -8 .

COMMONLY MADE ERROR

- Some Candidates use mid point formula instead of section formula to find the coordinates of P. Some candidates also make calculation errors.

ANSWERING TIP

- Understand the concept if a point divides a line segment in the ratio $m: n(m \neq n)$ then $m: n$ is not equal to $n: m$.
Q.4. Find the ratio in which the line $x-3 y=0$ divides the line segment joining the points $(-2,-5)$ and $(6,3)$. Find the coordinates of the point of intersection. A [CBSE OD Set-I, II, III, 2019]
Sol. Let the line $x-3 y=0$ intersect the segment

$$
\mathrm{A}_{(-2,-5)}^{\substack{\text { A } \\ x-3 y=0}}
$$

joining $\mathrm{A}(-2,-5)$ and $\mathrm{B}(6,3)$ in the ratio $k: 1$
\therefore Coordinates of P are $\left(\frac{6 k-2}{k+1}, \frac{3 k-5}{k+1}\right)$

$$
\text { P lies on } x-3 y=0 \Rightarrow \frac{6 k-2}{k+1}=3\left(\frac{3 k-5}{k+1}\right)
$$

$$
\Rightarrow \quad k=\frac{13}{3}
$$

\therefore Ratio is $13: 3$
\Rightarrow Coordinates of P are $\left(\frac{9}{2}, \frac{3}{2}\right)$
[CBSE Marking Scheme, 2019]

Detailed Solution:

Let the ratio in which line $x-3 y=0$ divides the line segment is $k: 1$

Using section formula, we get

$$
\begin{align*}
x & =\frac{k \times 6+1 \times(-2)}{k+1} \\
& =\frac{6 k-2}{k+1} \tag{i}\\
y & =\frac{k \times 3+1 \times(-5)}{k+1} \\
& =\frac{3 k-5}{k+1}
\end{align*}
$$

and

The point $\mathrm{P}(x, y)$ lies on the line, hence satisfies the equation of the given line.

$$
\begin{aligned}
\Rightarrow & \frac{6 k-2}{k+1}-3\left(\frac{3 k-5}{k+1}\right) & =0 \\
\Rightarrow & 6 k-2-3(3 k-5) & =0 \\
\Rightarrow & 6 k-2-9 k+15 & =0 \\
\Rightarrow & -3 k+13 & =0 \\
\Rightarrow & k & =\frac{13}{3}
\end{aligned}
$$

Hence, the required ratio is $13: 3$
Now, substituting value of k in x and y, we get

$$
\begin{aligned}
x & =\frac{6 \times\left(\frac{13}{3}\right)-2}{\frac{13}{3}+1} \\
& =\frac{78-6}{16} \\
& =\frac{72}{16} \\
& =\frac{9}{2}
\end{aligned}
$$

$$
\begin{align*}
y & =\frac{3\left(\frac{13}{3}\right)-5}{\frac{13}{3}+1} \\
& =\frac{8 \times 3}{16} \\
& =\frac{24}{16}=\frac{3}{2}
\end{align*}
$$

Hence, the coordinates of point of intersection

$$
\mathrm{P}(x, y)=\left(\frac{9}{2}, \frac{3}{2}\right)
$$

Q. 5. If $\mathrm{A}(-2,1), \mathrm{B}(a, 0), \mathrm{C}(4, b)$ and $\mathrm{D}(1,2)$ are the vertices of a parallelogram $A B C D$, find the values of a and b. Hence find the lengths of its sides.

A [CBSE Delhi/OD, 2018]
Sol. Given, $A B C D$ is a parallelogram and diagonals AC and BD bisect each other

1
Therefore mid point P of BD is same as mid point of AC

$$
\begin{gathered}
\left(\frac{a+1}{2}, \frac{2}{2}\right)=\left(\frac{-2+4}{2}, \frac{1+b}{2}\right) \\
\frac{a+1}{2}=1 \text { and } \frac{b+1}{2}=1
\end{gathered}
$$

\Rightarrow
$\Rightarrow a=1, b=1$. Therefore, length of sides are $\sqrt{10}$ units each.
$1 / 2+1$
[CBSE Marking Scheme, 2018]

Detailed Solution:

We know that diagonals of parallelogram bisect each other.
\therefore Mid-point of diagonal AC

$$
\left(\frac{-2+4}{2}, \frac{1+b}{2}\right)=\left(1, \frac{1+b}{2}\right)
$$

Mid-point of diagonal BD

$$
\left(\frac{a+1}{2}, \frac{0+2}{2}\right)=\left(\frac{a+1}{2}, 1\right)
$$

Mid point of diagonal $A C=$ mid point of diagonal $B D$

$$
\begin{aligned}
& & 1 & =\frac{a+1}{2} \text { and } \frac{1+b}{2}=1 \\
& \therefore & 2 & =a+1 \text { and } 1+b=2 \\
& \text { Again, } & a & =1 \quad \text { and } \quad b=1 \quad 1 / 2 \\
& & A B & =\left|\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right|
\end{aligned}
$$

and

$$
\begin{aligned}
& =\left|\sqrt{(1+2)^{2}+(0-1)^{2}}\right| \\
A B & =|\sqrt{9+1}|=\sqrt{10} \text { unit } \\
B C & =\left|\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right| \\
& =\left|\sqrt{(4-1)^{2}+(1-0)^{2}}\right| \\
B C & =|\sqrt{9+1}| \\
& =\sqrt{10} \text { unit }
\end{aligned}
$$

$A B C D$ is a parallelogram (Given)
$\therefore \quad A B=C D=\sqrt{10}$ unit
and $\quad B C=A D=\sqrt{10}$ unit
Q. 6. The points $\mathrm{A}(1,-2), \mathrm{B}(2,3), \mathrm{C}(k, 2)$ and $\mathrm{D}(-4,-3)$ are the vertices of a parallelogram. Find the value of k.
C + U [CBSE SQP, 2018]

Sol.

Diagonals of parallelogram bisect each other
$\Rightarrow \quad$ midpoint of $A C=$ midpoint of $B D$
$\Rightarrow \quad\left(\frac{1+k}{2}, \frac{-2+2}{2}\right)=\left(\frac{-4+2}{2}, \frac{-3+3}{2}\right)$
$\Rightarrow \quad \frac{1+k}{2}=\frac{-2}{2}$
$\Rightarrow \quad k=-3$
[CBSE Marking Scheme, 2018]

COMMONLY MADE ERROR

- Mostly candidates do not use the mid point formula. Generally they use distance formula.

ANSWERING TIP

- Candidates should use mid point formula by which they can get correct solution in lesser time.
Q.7. If coordinates of two adjacent vertices of a parallelogram are $(3,2),(1,0)$ and diagonals bisect each other at $(2,-5)$, find coordinates of the other two vertices. U [CBSE Comptt. Set I, II, III, 2018]
Sol. Let the coordinates of C and D be (a, b) and (c, d).

Coordinates of C and D are $(1,-12)$ and $(3,-10) 1$
[CBSE Marking Scheme, 2018]
Q. 8. In what ratio does the point $\left(\frac{24}{11}, y\right)$ divide the line segment joining the points $P(2,-2)$ and $Q(3,7)$? Also find the value of y. U [CBSE OD Set-I, III, 2017]

Sol.
 Here $x_{1}=2, y_{1}=-2$
$\quad \Rightarrow \quad \frac{24}{11}=\frac{3 m+2 n}{m+n}$

Q. 9. Find the co-ordinates of the points which divide the line segment joining the points $(5,7)$ and $(8,10)$ in 3 equal parts.
[Board SQP, 2016]
A [CBSE OD Comptt. Set-II, 2017]
Sol.
$(5,7)$
$\xrightarrow[(8,10)]{B}$

Let $\mathrm{P}(x, y)$ and $\mathrm{Q}\left(x_{1}, y_{1}\right)$ trisect AB .
$\because \mathrm{P}$ divides AB in the ratio $1: 2$
$\therefore \quad x=\frac{1(8)+2(5)}{3}=6$, 1
and

$$
y=\frac{1(10)+2(7)}{3}=8
$$

$\therefore \mathrm{P}(6,8)$
And Q is the mid point of PB.

$$
\begin{aligned}
& x_{1}=\frac{6+8}{2}=7 \\
& y_{1}=\frac{8+10}{2}=9
\end{aligned}
$$

$\therefore \mathrm{Q}(7,9)$
[CBSE Marking Scheme, 2017]
Q. 10. Show that $\triangle A B C$ with vertices $A(-2,0), B(0,2)$ and $C(2,0)$ is similar to $\triangle D E F$ with vertices $D(-4,0), E(0,4)$ and $F(4,0)$.

A [Board Foreign Set-I, II 2017;
CBSE Delhi Set-I, II, III, 2017]
Sol. Using distance formula

$$
\begin{aligned}
A B & =\left|\sqrt{(0+2)^{2}+(2-0)^{2}}\right|=|\sqrt{4+4}| \\
& =2 \sqrt{2} \text { units } \\
B C & =\left|\sqrt{(2-0)^{2}+(0-2)^{2}}\right|=|\sqrt{4+4}| \\
& =2 \sqrt{2} \text { units } \\
C A & =\left|\sqrt{(-2-2)^{2}+(0-0)^{2}}\right|=|\sqrt{16}| \\
& =4 \text { units }
\end{aligned}
$$

and

$$
\begin{align*}
D E & =\left|\sqrt{(0+4)^{2}+(4-0)^{2}}\right|=|\sqrt{32}| \\
& =4 \sqrt{2} \text { units } \\
E F & =\left|\sqrt{(4-0)^{2}+(0-4)^{2}}\right|=|\sqrt{32}| \\
& =4 \sqrt{2} \text { units } \\
F D & =\left|\sqrt{(-4-4)^{2}+(0-0)^{2}}\right|=|\sqrt{64}| \\
& =8 \text { units }
\end{align*}
$$

Since, ratio of the corresponding sides of two similar $\Delta \mathrm{s}$ is equal.
i.e., $\quad \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
or, $\frac{2 \sqrt{2}}{4 \sqrt{2}}=\frac{2 \sqrt{2}}{4 \sqrt{2}}=\frac{4}{8}=\frac{1}{2}$
$\therefore \quad \triangle A B C \sim \triangle D E F \quad$ Hence Proved.
[CBSE Marking Scheme, 2017]
Q. 11. In the given figure $\triangle \mathrm{ABC}$ is an equilateral triangle of side 3 units. Find the co-ordinates of the other two vertices.

A [Foreign Set-I, II, 2017]
[Foreign Set-III, 2015]

Sol. The co-ordinates of B are $(5,0)$
$(A B=3)$
Let co-ordinates of C be (x, y)

$$
1
$$

Since $\quad A C^{2}=B C^{2}$
(sides of equilateral triangle)

$$
(x-2)^{2}+(y-0)^{2}=(x-5)^{2}+(y-0)^{2}
$$

or, $x^{2}+4-4 x+y^{2}=x^{2}+25-10 x+y^{2}$
or, $\quad 6 x=21$

$$
\begin{equation*}
x=\frac{7}{2} \tag{1}
\end{equation*}
$$

And $(x-2)^{2}+(y-0)^{2}=9$
or, $\left(\frac{7}{2}-2\right)^{2}+y^{2}=9$
or, $\quad \frac{9}{4}+y^{2}=9$ or, $y^{2}=9-\frac{9}{4}$
or,

$$
y^{2}=\frac{27}{4} \text { or } y= \pm \frac{3 \sqrt{3}}{2}
$$

(+ve sign to be taken)
Hence, $C=\left(\frac{7}{2}, \frac{3 \sqrt{3}}{2}\right)$.
Q. 12. If the point $C(-1,2)$ divides internally the line segment joining the points $\mathrm{A}(2,5)$ and $\mathrm{B}(x, y)$ in the ratio $3: 4$, find the value of $x^{2}+y^{2}$.
(A [Foreign Set I, II, III, 2016]

Sol.

Given that, $\quad \frac{A C}{C B}=\frac{3}{4}$
Applying section formula for x co-ordinate,

$$
-1=\frac{3 x+4(2)}{3+4}
$$

or, $\quad-7=3 x+8$
or $\quad x=-5$
Similarly for y co-ordinate,

$$
\begin{aligned}
2 & =\frac{3 y+4(5)}{3+4} \\
14 & =3 y+20 \\
y & =-2
\end{aligned}
$$

or
$\therefore(x, y)$ is $(-5,-2)$

$$
\text { Hence, } \quad \begin{aligned}
x^{2}+y^{2} & =(-5)^{2}+(-2)^{2} \\
& =25+4 \\
& =29
\end{aligned}
$$

1
[CBSE Marking Scheme, 2016]
Q. 13. If the co-ordinates of points A and B are ($-2,-2$) and $(2,-4)$ respectively, find the co-ordinates of P such that $A P=\frac{3}{7} A B$, where P lies on the line segment AB. U [CBSE OD, 2015, Set I, II, III, 2015]

Sol.

$$
A P=\frac{3}{7} A B \text { or, } A P: P B=3: 41
$$

\therefore Using the section formula

$$
x=\frac{m x_{2}+n x_{1}}{m+n}
$$

and

$$
y=\frac{m y_{2}+n y_{1}}{m+n}
$$

$$
x=\frac{3 \times 2+4 \times-2}{3+4}=-\frac{2}{7}
$$

and $y=\frac{3 \times-4+4 \times-2}{3+4}=-\frac{20}{7} \quad 1 / 2$

Hence,

$$
P=\left(-\frac{2}{7},-\frac{20}{7}\right)
$$

[CBSE Marking Scheme, 2015]
Q. 14. The co-ordinates of the vertices of $\triangle \mathrm{ABC}$ are $A(7,2), B(9,10)$ and $C(1,4)$. If E and F are the mid-points of $A B$ and $A C$ respectively, prove that $E F=\frac{1}{2} B C$.

A [CBSE Board Term-2, 2015]
Sol. Let the mid-points of AB and AC be $\mathrm{E}\left(x_{1}, y_{1}\right)$ and $\mathrm{F}\left(x_{2}, y_{2}\right)$
\therefore Co-ordinates of point $E=\left(\frac{9+7}{2}, \frac{10+2}{2}\right)$

Co-ordinates of point $F=\left(\frac{7+1}{2}, \frac{2+4}{2}\right)$

$$
\begin{align*}
\qquad\left(x_{2}, y_{2}\right) & =(4,3) \\
\text { Length of } E F & =\left|\sqrt{(8-4)^{2}+(6-3)^{2}}\right|
\end{align*}
$$

$$
\begin{align*}
& =\left|\sqrt{(4)^{2}+(3)^{2}}\right| \\
& =5 \text { units } \tag{i}\\
\text { Length of } B C & =\left|\sqrt{(9-1)^{2}+(10-4)^{2}}\right| \\
& =\left|\sqrt{(8)^{2}+(6)^{2}}\right| \\
& =10 \text { units } \tag{ii}
\end{align*}
$$

From equations (i) and (ii), we get

$$
E F=\frac{1}{2} B C . \quad \text { Hence proved. } 1
$$

[CBSE Marking Scheme, 2015]
Q. 15. Find the ratio in which the line segment joining the points $A(3,-3)$ and $B(-2,7)$ is divided by X-axis. Also find the co-ordinates of point of division.

A [CBSE Delhi Term-2, 2015]

Sol.

Let the ratio be $k: 1$,
Using section formula, we get,

$$
\text { or, } \quad k=\frac{3}{7}
$$

or, \quad Ratio $=3: 7$
Also,

$$
x=\frac{m_{2} x_{1}+m_{1} x_{2}}{m_{1}+m_{2}}
$$

$=\frac{1(3)+k(-2)}{1+k}$
$x=\frac{3-2 \times \frac{3}{7}}{1+\frac{3}{7}}=\frac{21-6}{7+3}=\frac{3}{2}$
\therefore Co-ordinates of point P are $\left(\frac{3}{2}, 0\right)$.
[CBSE Marking Scheme, 2014]

Long Answer Type Questions

AI Q. 1. Find the ratio in which the Y -axis divides the line segment joining the points $(-1,-4)$ and $(5,-6)$. Also find the coordinates of the point of intersection.

A [CBSE OD Set-III, 2019]
Sol. Any point on Y-axis is $\mathrm{P}(0, y)$
1
Let P divides AB in $k: 1$

$$
\begin{aligned}
& \begin{array}{ccc}
k: 1 \\
\bullet & \\
\hdashline \mathrm{~A}(-1,-4) & \mathrm{P}(0, y) & \mathrm{B}(5,-6)
\end{array} \\
& \Rightarrow \quad 0=\frac{5 k-1}{k+1} \Rightarrow k=\frac{1}{5} \text { i.e., } 1: 5 \\
& \Rightarrow \quad y=\frac{-6 k-4}{k+1}=\frac{-\frac{6}{5}-4}{\frac{1}{5}+1}=\frac{-26}{6}=\frac{-13}{3} \\
& \Rightarrow P \text { is }\left(0, \frac{-13}{3}\right) \\
& \text { [CBSE Marking Scheme, 2019] } 1
\end{aligned}
$$

AT] Q. 2. If $\mathrm{P}(9 a-2,-b)$ divides the line segment joining $\mathrm{A}(3 a+1,-3)$ and $\mathrm{B}(8 a, 5)$ in the ratio $3: 1$. Find the values of a and b.

A [CBSE SQP, 2016]
Sol. By section formula

$$
\begin{equation*}
9 a-2=\frac{3(8 a)+1(3 a+1)}{3+1} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
-b=\frac{3(5)+1(-3)}{3+1} \tag{ii}
\end{equation*}
$$

From (ii),

$$
\begin{align*}
&-b=\frac{15-3}{4}=3 \\
& b=-3 \tag{1}\\
& \text { From (i), } \quad \begin{aligned}
9 a-2 & =\frac{24 a+3 a+1}{4} \\
4(9 a-2) & =27 a+1 \\
36 a-8 & =27 a+1 \\
9 a & =9 \\
a & =1
\end{aligned} \text { 据 } \tag{1}
\end{align*}
$$

[CBSE Marking Scheme, 2016]
Q.3. The base $B C$ of an equilateral triangle $A B C$ lies on y-axis. The co-ordinates of point C are $(0,-3)$. The origin is the mid-point of the base. Find the co-ordinates of the point A and B. Also find the co-ordinates of another point D such that BACD is a rhombus. A [Foreign Set I, II, 2015]

Sol. Co-ordinates of point B are $(0,3)$

$\therefore B C=6$ unit

Let the co-ordinates of point A be $(x, 0)$.
or, $\quad A B=\left|\sqrt{x^{2}+9}\right|$
$\because \quad A B^{2}=B C^{2}$
$\therefore \quad x^{2}+9=36$

or,

$$
x^{2}=27 \text { or, } x= \pm 3 \sqrt{3}
$$

Co-ordinates of point $A=(3 \sqrt{3}, 0)$
Since $A B C D$ is a rhombus.
or,
$A B=A C=C D=D B$
\therefore Co-ordinates of point $D=(-3 \sqrt{3}, 0)$.
[CBSE Marking Scheme, 2015]
Q. 4. $(1,-1),(0,4)$ and $(-5,3)$ are vertices of a triangle. Check whether it is a scalene triangle, isosceles triangle or an equilateral triangle. Also, find the length of its median joining the vertex $(1,-1)$ the mid-point of the opposite side.

A [CBSE, Term-2, 2015]

Sol.

Let the vertices of $\triangle \mathrm{ABC}$ be $\mathrm{A}(1,-1), \mathrm{B}(0,4)$ and $C(-5,3)$.
\therefore Using distance formula,

$$
\begin{aligned}
A B & =\left|\sqrt{(1-0)^{2}+(-1-4)^{2}}\right| \\
& =\left|\sqrt{1+5^{2}}\right| \\
& =\sqrt{26} \text { unit } \\
B C & =\left|\sqrt{(-5-0)^{2}+(3-4)^{2}}\right| \\
& =|\sqrt{25+1}|=\sqrt{26} \text { unit } \\
A C & =\left|\sqrt{(-5-1)^{2}+(3+1)^{2}}\right| \\
& =|\sqrt{36+16}|=\sqrt{52}
\end{aligned}
$$

$$
=2 \sqrt{13} \text { unit }
$$

$$
1 / 2
$$

or,

$$
A B=B C \neq A C
$$

or, $\triangle \mathrm{ABC}$ is isosceles.
Now, using mid-point formula, the co-ordinates of mid-point of BC are

$$
\begin{aligned}
& x=\frac{-5+0}{2}=-\frac{5}{2} \\
& y=\frac{3+4}{2}=\frac{7}{2}
\end{aligned}
$$

or, $\quad D(x, y)=\left(-\frac{5}{2}, \frac{7}{2}\right)$
\therefore Length of median, $A D$

$$
\begin{aligned}
& =\sqrt{\left(\frac{-5}{2}-1\right)^{2}+\left(\frac{7}{2}+1\right)^{2}} \\
& =\sqrt{\left(\frac{-7}{2}\right)^{2}+\left(\frac{9}{2}\right)^{2}} \\
& =\sqrt{\frac{130}{4}}=\frac{\sqrt{130}}{2} \text { unit }
\end{aligned}
$$

\therefore Length of median AD is $\frac{\sqrt{130}}{2}$ units.

TOPIC - 2

Area of Triangle

E Revision Notes

$>$ If $\mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{C}\left(x_{3}, y_{3}\right)$ are vertices of a triangle, then the co-ordinates of centroid are

$$
G=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
$$

$>$ If $\mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{C}\left(x_{3}, y_{3}\right)$ are vertices of a triangle,
then

$$
\text { Area of } \triangle A B C=\frac{1}{2}\left|\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right|
$$

$>$ If the points are collinear, then the area of triangle is zero.

How is it done on the GREENBOARD?

Q.1. Find k, if the point $A(2,3), B(5, K)$ and $C(7,9)$ are collinear.
Solution:
Step 1: If points A, B, and C are
collinear then the area of triangle
formed by them is zero.
Step 2: Area of triangle formed by the vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and (x_{3}, y_{3}) is given by

$$
\begin{aligned}
A=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)\right. & +x_{2}\left(y_{3}-y_{1}\right) \\
& \left.+x_{3}\left(y_{1}-y_{2}\right)\right]
\end{aligned}
$$

Step 3: According to question,

$$
0=\frac{1}{2}[2(k-9)+5(9-3)
$$

$$
+7(3-k)]
$$

or, $2 k-18+45-15+21-7 k=0$
or,
or,
or,
$-5 k+33=0$
$5 k=33$
$k=\frac{33}{5}$

Very Short Answer Type Questions

1 mark each

[AI] Q. 1. If the points $A(3,1), B(5, p)$ and $C(7,-5)$ are collinear, then find the value of p.

A [CBSE Delhi Set-I, 2020]
Sol. Here, $x_{1}=3, x_{2}=5, x_{3}=7$ and $y_{1}=1, y_{2}=p, y_{3}=-5$ If points are collinear, then area of triangle $=0$

$$
\begin{align*}
& \therefore & \frac{1}{2}\left|\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right| & =0 \quad 1 / 2 \\
& \Rightarrow & \frac{1}{2}|[3(p+5)+5(-5-1)+7(1-p)]| & =0 \\
\Rightarrow & & \frac{1}{2}|[3 p+15-30+7-7 p]| & =0 \\
\Rightarrow & & -4 p-8 & =0 \\
\Rightarrow & & -4 p & =8 \\
\Rightarrow & & p & =-2 .
\end{align*}
$$

Q.2. If the points $(0,0),(1,2)$ and (x, y) are collinear, then find the relation between x and y.

A [CBSE Term-2, 2015, 2016]
Sol. The points are collinear, then area of triangle $=0$

$$
\therefore \quad \frac{1}{2}\left|\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right|=0
$$

or, $\quad \frac{1}{2}|[0(2-y)+1(y-0)+x(0-2)]|=0$

$$
\frac{1}{2}|[y-2 x]|=0
$$

$$
\text { or, } \quad 2 x-y=0
$$

$$
\therefore \quad x=\frac{y}{2} 1
$$

[CBSE Marking Scheme, 2016]
Q. 3. If the points $A(x, 2), B(-3,-4)$ and $C(7,-5)$ are collinear, then find the value of x.

U [Foreign Set-I, II, III, 2015]
Sol. Since, the points are collinear, then
Area of triangle $=0$
$\frac{1}{2}\left|\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right|=0 \quad 1 / 2$
$\frac{1}{2}|[x(-4+5)+(-3)(-5-2)+7(2+4)]|=0$
$x+21+42=0$
$x=-63 \quad 1 / 2$

Short Answer Type Questions-I

2 marks each
Q. 1. Show that the points $A(0,1), B(2,3)$ and $C(3,4)$ are collinear.

U [CBSE Term-2, 2016]

Sol. Area of the triangle formed by the given points $\mathrm{A}(0,1), \mathrm{B}(2,3)$ and $\mathrm{C}(3,4)$

$$
\begin{aligned}
& =\frac{1}{2}|0(3-4)+2(4-1)+3(1-3)| \\
& =\frac{1}{2}|0+(2)(3)+(3)(-2)| \\
& =\frac{1}{2}|6-6| \\
& =\frac{1}{2}(0) \\
& =0
\end{aligned}
$$

\therefore The given points are collinear.
[CBSE Marking Scheme, 2016]
Q. 2. Prove that the points $(2,-2),(-2,1)$ and $(5,2)$ are the vertices of a right angled triangle. Also find the area of this triangle. A [Foreign Set I, II, III, 2016]

Sol. Let the points be $\mathrm{A}(2,-2), \mathrm{B}(-2,1)$ and $\mathrm{C}(5,2)$. Applying distance formula,

$$
\begin{aligned}
A B^{2} & =(2+2)^{2}+(-2-1)^{2} \\
& =16+9 \\
A B^{2} & =25 \text { or, } A B=5 \\
B C^{2} & =(-2-5)^{2}+(1-2)^{2} \\
& =49+1=50
\end{aligned}
$$

Similarly
or, $\quad B C^{2}=50$ or, $B C=5 \sqrt{2}$
Also,
$A C^{2}=(2-5)^{2}+(-2-2)^{2}$

$$
=9+16
$$

$$
=25
$$

or, $\quad A C^{2}=25$ or $A C=5$
Clearly $\quad A B^{2}+A C^{2}=B C^{2}$

$$
\begin{equation*}
25+25=50 \tag{1}
\end{equation*}
$$

Hence, the triangle is right angled,

$$
\text { Area of } \begin{aligned}
\triangle A B C & =\frac{1}{2} \times \text { Base } \times \text { Height } \\
& =\frac{1}{2} \times 5 \times 5=\frac{25}{2} \text { sq units. } 1
\end{aligned}
$$

[CBSE Marking Scheme, 2016]
Q.3. Find the relation between x and y, if the points $A(x, y), B(-5,7)$ and $C(-4,5)$ are collinear.

A [CBSE Term,-2, 2015]
Sol. If area covered by the given points is O , the points are collinear.

$$
\text { Area of } \triangle A B C=0
$$

$\frac{1}{2}\left|\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right|=0 \quad 1 / 2$

$$
=\frac{1}{2}|[x(7-5)-5(5-y)-4(y-7)]|=0 \quad \mathbf{1}
$$

or, $\quad 2 x-25+5 y-4 y+28=0 \quad 1 / 2$

$$
2 x+y+3=0
$$

[CBSE Marking Scheme, 2015]

Short Answer Type Questions-II

3 marks each

(AI) Q. 1. Find the area of triangle PQR formed by the points $P(-5,7), Q(-4,-5)$ and $R(4,5)$.

A [CBSE Delhi Set-I, 2020]
Sol. Here $x_{1}=-5, x_{2}=-4, x_{3}=4$ and $y_{1}=7, y_{2}=-5$, $y_{3}=5$

$$
\begin{aligned}
\therefore \text { Area of } \triangle P Q R= & \left.\frac{1}{2} \right\rvert\,\left[x_{1}\left(y_{2}-y_{3}\right)+\right. \\
& +x_{2}\left(y_{3}-y_{1}\right) \\
& \left.+x_{3}\left(y_{1}-y_{2}\right)\right]\left|\quad \frac{1}{2}\right|[-5(-5-5)-4(5-7) \\
& +4(7+5)] \mid 1 / 2 \\
& =\frac{1}{2}|[-5(-10)-4(-2)+4(12)]| \\
& =\frac{1}{2}|[50+8+48]| \\
& =\frac{1}{2} \times 106=53 \text { sq units. }
\end{aligned}
$$

(AI) Q. 2. Find the area of triangle ABC with $\mathrm{A}(1,-4)$ and the mid-points of sides through A being $(2,-1)$ and $(0,-1)$.

C +A [CBSE OD Set-I, 2020]
Sol. Let the coordinates of the points B and C be (x, y) and (a, b), then $\frac{x+1}{2}=2$
$\Rightarrow x=4-1=3$ and $\frac{y-4}{2}=-1$
$\Rightarrow y=-2+4=2$

$\mathrm{B}(x, y)$
$1 / 2$
Similarly, $\quad \frac{a+1}{2}=0 \Rightarrow a=-1$
and

$$
\frac{b-4}{2}=-1 \Rightarrow b=-2+4=2
$$

So, the coordinates of B and C are $(3,2)$ and $(-1,2)$
Here, $x_{1}=1, y_{1}=-4, x_{2}=3, y_{2}=2$ and $x_{3}=-1$, $y_{3}=2$
\therefore Area of $\triangle \mathrm{ABC}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)\right.$ $\left.+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=\frac{1}{2}[1(2-2)+3(2+4)-1(-4-2)]$
$=\frac{1}{2}[0+18+6]$
$=\frac{1}{2} \times 24$
$=12$ square units.

Topper Answer, 2019
 using section formula for mid-point;

Q. 3. Two friends Seem and Aditya work in the same office at Delhi. In the Christmas vacations, both decided to go to their hometowns represented by Town A and Town B respectively in the figure given below. Town A and Town B are connected by
trains from the same station C (in the given figure) in Delhi. Based on the given situation, answer the following questions :
(i) Who will travel more distance, Seem or Aditya, to reach to their hometown?
(ii) Seema and Aditya planned to meet at a location D situated at a point D represented by the mid-point of the line joining the points represented by Town A and Town B. Find the coordinates of the point represented by the point D.
(iii) Find the area of the triangle formed by joining the points represented by A, B and C.

[CBSE SQP, 2020]
Sol. (i) $A(1,7), B(4,2) C(-4,4)$
Distance travelled by Seema $=\sqrt{34}$ units
Distance travelled by Aditya $=\sqrt{68}$ units $\quad 1$
(ii) Coordinates of D are $\left(\frac{1+4}{2}, \frac{7+2}{2}\right)=\left(\frac{5}{2}, \frac{9}{2}\right) \mathbf{1}$
(iii) $\operatorname{ar}(\triangle A B C)=\frac{1}{2}|[1(2-4)+4(4-7)-4(7-2)]|$

$$
=17 \text { sq. units } \quad \mathbf{1}
$$

[CBSE SQP Marking Scheme, 2020]

Detailed Solution:

According to given graph,
The coordinates, where the station C is situated

$$
=(-4,4)
$$

The coordinates of Town $A=(1,7)$
and the coordinates of Town $B=(4,2)$
(i) Distance travelled by Seema from station C to their home town

$$
\begin{aligned}
A & =\left|\sqrt{(1+4)^{2}+(7-4)^{2}}\right| \\
& =\left|\sqrt{(5)^{2}+(3)^{2}}\right| \\
& =\sqrt{34} \text { unit }
\end{aligned}
$$

Distance travelled by Aditya from C to B

$$
\begin{aligned}
& =\sqrt{(4+4)^{2}+(2-4)^{2}} \\
& =\sqrt{(8)^{2}+(-2)^{2}} \\
& =\sqrt{68} \text { unit }
\end{aligned}
$$

Hence, Aditya travelled more distance.
(ii) We have, D is the mid-point AB .

The coordinates of $D=\left(\frac{1+4}{2}, \frac{7+2}{2}\right)$

$$
=\left(\frac{5}{2}, \frac{9}{2}\right) .
$$

(iii) Here, $x_{1}=1, y_{1}=7, x_{2}=4, y_{2}=2, x_{3}=-4$ and $y_{3}=4$.
\therefore Area of $\triangle A B C$

$$
\begin{aligned}
& =\frac{1}{2}\left|\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right| \\
& =\frac{1}{2}|[1(2-4)+4(4-7)+(-4)(7-2)]| \\
& =\frac{1}{2}|[-2-12-20]| \\
& =\frac{1}{2} \times|-34|=|-17|
\end{aligned}
$$

ar $\triangle A B C=17$ sq. units
Q. 4. If $A(-5,7), B(-4,-5), C(-1,-6)$ and $D(4,5)$ are the vertices of a quadrilateral, find the area of the quadrilateral ABCD. A [CBSE Delhi/OD, 2018]
[CBSE Term-2, 2015]
Sol. Area of quad. $\mathrm{ABCD}=\operatorname{ar} \triangle \mathrm{ABD}+\operatorname{ar} \triangle \mathrm{BCD}$

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{ABD}=\frac{1}{2} & \mid(-5)(-5-5) \\
& +(-4)(5-7)+(4)(7+5) \mid \\
& =53 \text { sq. units }
\end{aligned}
$$

Area of ar $\left.\triangle B C D=\frac{1}{2} \right\rvert\,(-4)(-6-5)+(-1)$

$$
(5+5)+4(-5+6) \mid
$$

$=\frac{1}{2}|44-10+4|$

$$
=19 \text { sq. units }
$$

Hence, area of quad. $A B C D=53+19$

$$
=72 \text { sq. units } \quad 1
$$

[CBSE Marking Scheme, 2018]

COMMONLY MADE ERROR

- Some candidates use correct formula for

ANSWERING TIP

- For simplifying, be careful. finding area of triangle but simplifying in error.

Detailed Solution:

(AI) Q. 5. Find the value of k for which the points ($3 k-1$, $k-2)(k, k-7)$ and $(k-1,-k-2)$ are collinear.

A [CBSE SQP, 2018]
Sol. For collinearity of the points, area of the triangle formed by given points is zero.

$$
\begin{align*}
& \frac{1}{2}\{(3 k-1)(k-7+k+2)+k(-k-2-k+2) \\
&+(k-1)(k-2-k+7)\}=0 \\
& \frac{1}{2}\left\{(3 k-1)(2 k-5)-2 k^{2}+5 k-5\right\}=0 \tag{1}\\
& 4 k^{2}-12 k=0 \tag{1}\\
& k=0,3 \tag{1}
\end{align*}
$$

If $k=0$ then two points are coincide

$$
k=3
$$

[CBSE Marking Scheme, 2018]
Q. 6. If the area of triangle with vertices $(x, 3),(4,4)$ and $(3,5)$ is 4 square units, find x. U [CBSE SQP, 2018]

Sol. Given,

$$
\operatorname{Ar}(A B C)=4
$$

$$
\text { If } \begin{array}{rlr}
\frac{1}{2}|[x(4-5)+4(5-3)+3(3-4)]| & =4 \\
(-x+5) & =8 \\
-x+5 & =8 \\
x & =-3 \\
-(-x+5) & =8 \\
x & =13 \\
& & 1 / 2 \\
& & 1 / 2 \\
\text { [CBSE Marking } & \text { Scheme, 2018] }
\end{array}
$$

Q. 7. If the points $A(0,1), B(6,3)$ and $C(x, 5)$ are the vertices of a triangle, find the value of x such that area of $\triangle A B C=10$.

U [CBSE S.A.II 2016]
[CBSE Compt. Set-I, II, III-2018]
Sol. Given, area of $\triangle A B C=10$
$\therefore \frac{1}{2}\left|\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right|=10 \quad 1 / 2$
Here, $x_{1}=0, y_{1}=1, x_{2}=6, y_{2}=3, x_{3}=x$ and $y_{3}=5$

Then, $\quad \frac{1}{2}|[0(3-5)+6(5-1)+x(1-3)]|=10 \quad 1 / 2$
\Rightarrow If $\quad \frac{1}{2}|[0+24+(-2) x]|=10 \quad 1 / 2$
$\Rightarrow \quad-(-2 x+24)=20$
$\Rightarrow \quad 2 x=20+24 \quad-2 x=-4$
$\Rightarrow \quad x=22 \quad x=+2.1$
Q. 8. Find the area of the triangle formed by joining the mid-points of the sides of a triangle, whose co-ordinates of vertices are $(0,-1),(2,1)$ and $(0,3)$ A [CBSE OD Comptt. Set I, III, 2017]
Sol. Let the vertices of given triangle be $\mathrm{A}(0,-1), \mathrm{B}(2,1)$ and $C(0,3)$.
Then, the coordinates of mid-points are $\mathrm{P}(1,0)$, $Q(1,2)$ and $R(0,1)$.
Area of $\triangle P Q R$,
$=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
$=\frac{1}{2}|(2-1)+1(1-0)+0(0-2)|$
$=\frac{1}{2}|1+1+0|$
$=1$ sq. unit
1
Q. 9. The area of a triangle is 5 sq. units. Two of its vertices are $(2,1)$ and $(3,-2)$. If the third vertex is $\left(\frac{7}{2}, y\right)$, find the value of y.

A [CBSE, Delhi Set II, 2017]

Sol. Given, ar $\triangle A B C=5$ sq. untis
or, $\frac{1}{2}\left|2(-2-y)+3(y-1)+\frac{7}{2}(1+2)\right|=5$
or, $\quad \frac{1}{2}\left|-4-2 y+3 y-3+\frac{21}{2}\right|=5$
or,

$$
\begin{equation*}
\left|y+\frac{7}{2}\right|=10 \tag{1}
\end{equation*}
$$

or,

$$
y=10-\frac{7}{2}=\frac{13}{2}
$$

If $y+\frac{7}{2}=-10$ or $y=-10-\frac{7}{2}=-\frac{27}{2}$
Hence, the value of $y=\frac{13}{2}$ or $-\frac{27}{2}$
[CBSE Marking Scheme, 2017]
Q. 10. If $a \neq b \neq 0$, prove that the points $\left(a, a^{2}\right),\left(b, b^{2}\right)$ and $(0,0)$ will not be collinear.

U [CBSE, Delhi Set I, II, III, 2017]
Sol. If the area covered by the given points is zero, then the points are collinear.

$$
\begin{align*}
& \therefore \quad \text { Area }=\frac{1}{2}\left[a\left(b^{2}-0\right)+b\left(0-a^{2}\right)+0\left(a^{2}-b^{2}\right)\right] \\
&=\frac{1}{2}\left[a b^{2}-a^{2} b+0\right] \tag{2}\\
&=\frac{1}{2}[a b(b-a)] \neq 0 \\
&(a \neq b \neq 0) \tag{1}
\end{align*}
$$

Hence, the given points are not collinear.
[CBSE Marking Scheme, 2017]
Q. 11. The points $A(4,-2), B(7,2), C(0,9)$ and $D(-3,5)$ form a parallelogram. Find the length of altitude of the parallelogram on the base $A B$.

U [CBSE SQP, 2017]
Sol. Let the height of parallelogram taking $A B$ as base be h.

$$
\begin{aligned}
\therefore \quad A B & =\left|\sqrt{(7-4)^{2}+(2+2)^{2}}\right| \\
& =\left|\sqrt{3^{2}+4^{2}}\right|=|\sqrt{9+16}| \\
& =5 \text { units. }
\end{aligned}
$$

Ar $\triangle A B C$
$=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{2}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
$=\frac{1}{2}|4(2-9)+7(9+2)+0(-2-2)|$
$=\frac{1}{2}|-28+77|$
$=\frac{1}{2} \times 49=\frac{49}{2}$ sq. units
Now, $\frac{1}{2} \times A B \times h=\frac{49}{2}$
or, $\quad 5 \times h=49$
or, $\quad h=\frac{49}{5}=9 \cdot 8$ units.
[CBSE Marking Scheme, 2017]

Long Answer Type Questions

5 marks each

Q. 1. If the points $\mathrm{A}(k+1,2 k), \mathrm{B}(3 k, 2 k+3)$ and $\mathrm{C}(5 k-1,5 k)$ are collinear, then find the value of k.

A [CBSE OD, Set-II, 2017]

Q.2. If the co-ordinates of two points are $A(3,4)$, $B(5,-2)$ and a point $P(x, 5)$ is such that $P A=$ $P B$, then find the area of $\triangle P A B$.

A [CBSE OD Comptt. Set-I, 2017]
Sol. Given $P A=P B$ or $P A^{2}=P B^{2}$, using distance formula,

$$
\begin{equation*}
(x-3)^{2}+(5-4)^{2}=(x-5)^{2}+(5+2)^{2} \tag{1}
\end{equation*}
$$

On solving, we get, $x=16$
\therefore ar $\triangle P A B$
$=\frac{1}{2}[16(4+2)+3(-2-5)+5(5-4)]$
$=\frac{1}{2}[96-21+5]=40$
Hence, area of triangle $=40$ sq. units
[CBSE Marking Scheme, 2017]
Detailed Solution:
The coordinates of P, A and B are $(x, 5),(3,4)$ and $(5,-2)$ respectively, then

$$
P A=P B \text { (given) }
$$

$1 / 2$

$$
\begin{aligned}
\left|\sqrt{(x-3)^{2}+(5-4)^{2}}\right| & =\left|\sqrt{(x-5)^{2}+(5+2)^{2}}\right| \\
\Rightarrow \quad\left|\sqrt{(x-3)^{2}+1}\right| & =\left|\sqrt{(x-5)^{2}+49}\right|
\end{aligned}
$$

(By using distance formula) $1 / 2$ Squaring on both sides, we get

$$
\begin{array}{rlrl}
& & (x-3)^{2}+1 & =(x-5)^{2}+49 \\
\Rightarrow & (x-3)^{2}-(x-5)^{2} & =48 \\
\Rightarrow & & {[(x-3)+(x-5)][(x-3)-(x-5)]} \\
& & & =48\left[\because a^{2}-b^{2}=(a+b)(a-b)\right] \\
\Rightarrow & & (2 x-8)(2) & =48 \\
\Rightarrow & 2 x-8 & =24 \\
\Rightarrow & & 2 x & =32 \\
\Rightarrow & x & =16
\end{array}
$$

Now, the point $\mathrm{P}(x, 5)$ is $\mathrm{P}(16,5) \quad 1 / 2$
\therefore Area of $\triangle P A B=\frac{1}{2}|16(4+2)+3(-2-5)+5(5-4)|$

$$
=\frac{1}{2}|96-21+5|=40 \quad 1 / 2
$$

Hence, area of $\triangle P A B=40$ sq. units.
[AI] Q. 3. The co-ordinates of the points A, B and C are (6, 3), $(-3,5)$ and $(4,-2)$ respectively. $P(x, y)$ is any point in the plane. Show that $\frac{\operatorname{ar}(\triangle P B C)}{\operatorname{ar}(\triangle A B C)}=\left|\frac{x+y-2}{7}\right|$

A [Foreign Set I, 2016]
Sol. $\mathrm{P}(x, y), \mathrm{B}(-3,5), \mathrm{C}(4,-2)$

$$
\begin{align*}
& \therefore \quad \operatorname{ar}(\triangle P B C)=\frac{1}{2}|x(7)+3(2+y)+4(y-5)| \\
& =\frac{1}{2}|7 x+7 y-14| \\
& \operatorname{ar}(\triangle A B C)=\frac{1}{2}|6 \times 7-3(-5)+4(3-5)| \\
& =\left|\frac{49}{2}\right| \tag{11/2}\\
& \therefore \quad\left|\frac{\operatorname{ar}(\triangle P B C)}{\operatorname{ar}(\triangle A B C)}\right|=\left|\frac{\frac{1}{2}(7 x+7 y-14)}{\frac{49}{2}}\right| \tag{1}\\
& =\left|\frac{7(x+y-2)}{49}\right| \\
& =\left|\frac{x+y-2}{7}\right|
\end{align*}
$$

[CBSE Marking Scheme, 2016]
[AI Q. 4. Prove that the area of a triangle with vertices $(t, t-2),(t+2, t+2)$ and $(t+3, t)$ is independent of t.

U [CBSE,Delhi Set I, II, III, 2016]
Sol. Area of the triangle $\left.=\frac{1}{2} \right\rvert\, t(t+2-t)+(t+2)$

$$
\begin{array}{ll}
\qquad(t-t+2)+(t+3)(t-2-t-2) \mid & \mathbf{2} \\
=\frac{1}{2}[2 t+2 t+4-4 t-12] & \mathbf{1} \\
=4 \text { sq. units. } & \mathbf{1} \\
\text { which is independent of } t . & \mathbf{1}
\end{array}
$$

[CBSE Marking Scheme, 2016]
Q. 5. In the given figure, the vertices of $\triangle A B C$ are $A(4,6)$, $B(1,5)$ and $C(7,2)$. A line-segment $D E$ is drawn to intersect sides $A B$ and $A C$ at D and E respectively such that $\frac{A D}{A B}=\frac{A E}{A C}=\frac{1}{3}$. Calculate the area of $\triangle \mathrm{ADE}$ and compare it with area of $\triangle \mathrm{ABC}$.

A [CBSE, OD Set I, II, III, 2016]
[CBSE Delhi Board, 2015]

Sol. Area of a triangle having vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by,

$$
\begin{align*}
& \Delta=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right| \\
& \quad \text { ar } \triangle A B C=\frac{1}{2}|4(5-2)+1(2-6)+7(6-5)| \quad 1 / 2 \\
& \quad \text { ar } \triangle A B C=\frac{1}{2}|12+(-4)+7| \\
& \tag{1}\\
& \text { ar } \triangle A B C=\frac{15}{2} \text { sq. units. }
\end{align*}
$$

In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$,

$$
\frac{A D}{A B}=\frac{A E}{E C}=\frac{1}{3}
$$

and

$$
\angle D A E=\angle B A C
$$

(Common)
Hence

$$
\triangle A D E \sim \triangle A B C
$$

(By AAA)
or, $\quad \frac{\text { Area } \triangle A D E}{\text { Area } \triangle A B C}=\left(\frac{A D}{A B}\right)^{2}=\left(\frac{1}{3}\right)^{2}=\frac{1}{9} \quad 1 / 2$
or, $\quad \frac{\operatorname{Ar} \triangle A D E}{\left(\frac{15}{2}\right)}=\frac{1}{9}$
or, \quad Area $\triangle A D E=\frac{15}{2 \times 9}=\frac{5}{6}$ sq. units.
1

Area $A D E$: Area $A B C=\frac{5}{6}: \frac{15}{2}=1: 9$
Q. 6. Find the values of k so that the area of the triangle with vertices $(1,-1),(-4,2 k)$ and $(-k,-5)$ is 24 sq. units.

A [CBSE Board, 2015]

Sol. Area of triangle $\left.=\frac{1}{2} \right\rvert\, x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+$

$$
\begin{equation*}
x_{3}\left(y_{1}-y_{2}\right) \mid \tag{2}
\end{equation*}
$$

or, $24=\frac{1}{2}|1(2 k+5)-4(-5+1)-k(-1-2 k)|$
or, $\quad 48=2 k+5+16+k+2 k^{2} \quad 1$
or, $\quad 2 k^{2}+3 k-27=0$
or, $\quad(k-3)(2 k+9)=0$
or,

$$
\begin{equation*}
k=3, k=\frac{-9}{2} \tag{1}
\end{equation*}
$$

[CBSE Marking Scheme, 2015]

Visual Case Based Questions

4 marks each

Note: Attempt any four sub parts from each question. Each sub part carries 1 mark each
(AI) Q. 1. The diagram show the plans for a sun room. It will be built onto the wall of a house. The four walls of the sun room are square clear glass panels. The roof is made using,

- Four clear glass panels, trapezium in shape, all of the same size
- One tinted glass panel, half a regular octagon in shape

(i) Refer to Top View, find the mid-point of the segment joining the points $J(6,17)$ and $I(9,16)$.
(a) $\frac{33}{2}, \frac{15}{2}$
(b) $\frac{3}{2}, \frac{1}{2}$
(c) $\frac{15}{2}, \frac{33}{2}$
(d) $\frac{1}{2}, \frac{3}{2}$

Sol. Correct option: (c).
Explanation: Mid-point of $\mathrm{J}(6,17)$ and $\mathrm{I}(9,16)$ is

$$
\begin{aligned}
& x=\frac{6+9}{2} \text { and } y=\frac{17+16}{2} \\
& x=\frac{15}{2} \text { and } y=\frac{33}{2}
\end{aligned}
$$

(ii) Refer to front View, the distance of the point P from the y-axis is:
(a) 4
(b) 15
(c) 19
(d) 25

Sol. Correct option: (a).
Explanation: The distance of the point P from the Y -axis $=4$.
[CBSE Marking Scheme, 2020] 1
(iii) Refer to front view, the distance between the points A and S is
(a) 4
(b) 8
(c) 14
(d) 20

Sol. Correct option: (c).
Explanation: A's coordinates $=(1,8)$
S's coordinates $=(15,8)$
Then,

$$
A S=\left|\sqrt{(15-1)^{2}+(8-8)^{2}}\right|
$$

$$
=\sqrt{(14)^{2}}
$$

$$
\begin{equation*}
=14 \tag{1}
\end{equation*}
$$

[CBSE Marking Scheme, 2020]
(iv) Refer to front view, find the co-ordinates of the point which divides the line segment joining the points A and B in the ratio 1:3 internally.
(a) $(8.5,2.0)$
(b) $(2.0,9.5)$
(c) $(3.0,7.5)$
(d) $(2.0,8.5)$

Sol. Correct option: (d).
Explanation: $(2.0,8.5)$
[CBSE Marking Scheme, 2020]
Detailed Solution:
The coordinates of $A=(1,8)$
The coordinates of $B=(4,10)$
Also,

$$
m=1 \text { and } n=3
$$

Then, $\quad(x, y)=\left(\frac{1 \times 4+3 \times 1}{1+3}, \frac{1 \times 10+3 \times 8}{1+3}\right)$
$=\left(\frac{7}{4}, \frac{34}{4}\right)$
$=(1.75,8.5)$
(v) Refer to front view, if a point (x, y) is equidistant from the $Q(9,8)$ and $S(17,8)$, then
(a) $x+y=13$
(b) $x-13=0$
(c) $y-13=0$
(d) $x-y=13$

Sol. Correct option: (b).
Explanation: $x-13=0$.
[CBSE Marking Scheme, 2020]

Detailed Solution:
Let point be $\mathrm{P}(x, y)$

$$
P Q^{2}=P S^{2}
$$

Q. 2. Ayush Starts walking from his house to office. Instead of going to the office directly, he goes to a bank first, from there to his daughter's school and then reaches the office.
(Assume that all distances covered are in straight lines). If the house is situated at $(2,4)$, bank at $(5,8)$, school at $(13,14)$ and office at $(13,26)$ and coordinates are in km .

(i) What is the distance between house and bank ?
(a) 5 km
(b) 10 km
(c) 12 km
(d) 27 km

Sol. Correct option: (b).
Explanation: We know that,
Distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.

$$
d=\left|\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right|
$$

Now, distance between house and bank,

$$
\begin{align*}
& =\left|\sqrt{(5-2)^{2}+(8-4)^{2}}\right| \\
& =\left|\sqrt{(3)^{2}+(4)^{2}}\right| \\
& =|\sqrt{9+16}| \\
& =|\sqrt{25}| \\
& =5 \mathrm{~km} \tag{1}
\end{align*}
$$

(ii) What is the distance between Daughter's School and bank?
(a) 5 km
(b) 10 km
(c) 12 km
(d) 27 km

Sol. Correct option: (b).
Explanation: Distance between bank and daughter's school,

$$
\begin{align*}
& =\left|\sqrt{(13-5)^{2}+(14-8)^{2}}\right| \\
& =\left|\sqrt{(8)^{2}+(6)^{2}}\right| \\
& =|\sqrt{64+36}| \\
& =|\sqrt{100}| \\
& =10 \mathrm{~km} \tag{1}
\end{align*}
$$

(iii) What is the distance between house and office?
(a) 24.6 km
(b) 26.4 km
(c) 24 km
(d) 26 km

Sol. Correct option: (b).
Explanation: Distance between house to office,

$$
=\left|\sqrt{(13-2)^{2}+(26-4)^{2}}\right|
$$

$$
\begin{align*}
& \text { or, }(x-9)^{2}+(y-8)^{2}=(x-17)^{2}+(y-8)^{2} \\
& \text { or, } \quad x-13=0 \tag{1}
\end{align*}
$$

(i) Find the position of green flag
(a) $(2,25)$
(b) $\quad(2,0.25)$
(c) $(25,2)$
(d) $(0,-25)$

Sol. Correct option: (a).
(ii) Find the position of red flag
(a) $(8,0)$
(b) $(20,8)$
(c) $(8,20)$
(d) $(8,0.2)$

Sol. Correct option: (c).
(iii) What is the distance between both the flags ?
(a) $\sqrt{41}$
(b) $\sqrt{11}$
(b) $\sqrt{61}$
(c) $\sqrt{51}$

Sol. Correct option: (c).
Explanation: Position of Green flag $=(2,25)$

$$
\text { Position of Red flag }=(8,20)
$$

Distance between both the flags

$$
\begin{aligned}
\sqrt{(8-2)^{2}+(20-25)^{2}} & =\sqrt{6^{2}+(-5)^{2}} \\
& =\sqrt{36+25} \\
& =\sqrt{61}
\end{aligned}
$$

(iv) If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag ?
(a) $5,22.5)$
(b) $(10,22)$
(c) $(2,8.5)$
(d) $(2.5,20)$

Sol. Correct option: (a).
Explanation: Position of blue flag
Mid-point of line segment joining the green and red flags

$$
\begin{aligned}
& =\left(\frac{2+8}{2}, \frac{25+20}{2}\right) \\
& =(5,22.5)
\end{aligned}
$$

(v) If Joy has to post a flag at one-fourth distance from green flag, in the line segment joining the green and red flags, then where should he post his flag?
(a) $(3.5,24)$
(b) $(0.5,12.5)$
(c) $(2.25,8.5)$
(d) $(25,20)$

Sol. Correct option: (a).
Explanation: Position of Joy's flag
$=$ Mid-point of line segment joining green and blue flags
$=\left[\frac{2+5}{2}, \frac{25+22.5}{2}\right]$
$=[3.5,23.75] \sim[3.5,24]$
Q. 4. The class X students school in krishnagar have been allotted a rectangular plot of land for their gardening activity. Saplings of Gulmohar are planted on the boundary at a distance of 1 m from each other. There is triangular grassy lawn in the plot as shown in the figure. The students are to sow seeds of flowering plants on the remaining area of the plot.

(i) Taking A as origin, find the coordinates of P.
(a) $(4,6)$
(b) $(6,4)$
(c) $(0,6)$
(d) $(4,0)$

Sol. Correct option: (a).
(ii) What will be the coordinates of R, if C is the origin ?
(a) $(8,6)$
(b) $(3,10)$
(c) $(10,3)$
(d) $(0,6)$

Sol. Correct option: (c).
(iii) What will be the coordinates of Q, if C is the origin ?
(a) $(6,13)$
(b) $(-6,13)$
(c) $(-13,6)$
(d) $(13,6)$

Sol. Correct option: (d).
(iv) Calculate the area of the triangles if A is the origin.
(a) 4.5
(b) 6
(c) 8
(d) 6.25

Sol. Correct option: (a).
Explanation: Coordinates of $P=(4,6)$
Coordinates of $Q=(3,2)$
Coordinates of $R=(6,5)$

$$
\begin{aligned}
\text { Area of triangle } P Q R= & \frac{1}{2}\left[x_{1}\left(y_{2}-y_{2}\right)+x_{2}\left(y_{3}-y_{1}\right)\right. \\
& \left.+x_{3}\left(y_{1}-y_{2}\right)\right] \\
& =\frac{1}{2}[4(-3)+3(-1)+6(4)] \\
& =\frac{1}{2}[-12+(-3)+24]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}[-12+21] \\
& =\frac{1}{2}[9] \\
& =4.5 \text { sq. units. }
\end{aligned}
$$

(v) Calculate the area of the triangles if C is the origin.
(a) 8
(b) 5
(c) 6.25
(d) 4.5

Sol. Correct option: (d).
Q. 1. To locate a point Q on line segment $A B$ such that $B Q=\frac{5}{7} \times A B$. What is the ratio of line segment in which $A B$ is divided ?

A [CBSE, Board Term-2, 2013] 1
Q. 2. Find the mid-point of $P(-5,0)$ and $Q(5,0)$.
Q. 3. If the distance between the points $(4, p)$ and $(1,0)$ is 5 , then the value of p.

R 1
Q.4. AOBC is a rectangle whose three vertices are $A(0,3), O(0,0)$ and $B(5,0)$. Find the length of its diagonal.

U 1
Q. 5 . Find the ratio in which the line segment joining the points $(6,4)$ and $(1,-7)$ is divided by the x-axis.
Q. 6. VISUAL CASE STUDY BASED QUESTIONS:

In a room, 4 friends are seated at the points A, B, C and D as shown in figure. Reeta and Meeta walk into the room and after observing for a few minutes Reeta asks Meeta.

Q.1. What is the position of A ?
(a) $(4,3)$
(b) $(3,3)$
(c) $(3,4)$
(d) None of these
Q. 2. What is the middle position of B and C ?
(a) $\left(\frac{15}{2}, \frac{11}{2}\right)$
(b) $\left(\frac{2}{15}, \frac{11}{2}\right)$
(c) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(d) None of these
Q. 3. What is the position of D ?
(a) $(6,0)$
(b) $(0,6)$
(c) $(6,1)$
(d) $(1,6)$
Q. 4. What is the distance between A and B ?
(a) $3 \sqrt{2}$ unit
(b) $2 \sqrt{3}$ unit
(c) $2 \sqrt{2}$ unit
(c) $3 \sqrt{3}$ unit
Q. 5. What is the distance between C and D
(a) $\sqrt{2}$ unit
(b) $2 \sqrt{2}$ unit
(c) $3 \sqrt{2}$ unit
(c) $4 \sqrt{2}$ unit
Q. 7. If $P(2,-1), Q(3,4), R(-2,3)$ and $S(-3,-2)$ be four points in a plane, show that PQRS is a rhombus but not a square. A [CBSE Term-2, 2012] 2
Q. 8. If (a, b) is the mid-point of the segment joining the points $\mathrm{A}(10,-6)$ and $\mathrm{B}(k, 4)$ and $a-2 b=18$, find the value of k and the distance AB.

$$
\mathrm{C}+\mathrm{A}[\mathrm{CBSE} \text { Term-2, 2012] } 2
$$

Q. 9. The co-ordinates of vertices of $\triangle \mathrm{ABC}$ are $\mathrm{A}(1,-1)$, $B(-4,6)$ and $C(-3,-5)$. Draw the figure and prove that $\triangle \mathrm{ABC}$ is a scalene triangle. Find its area also.

A [CBSE Term-2, 2014] 3
Q. 10. If $(3,2)$ and $(-3,2)$ are two vertices of an equilateral triangle which contains the origin, find the third vertex.

A [CBSE, Term-2, 2012] 3
Q. 11. $A(4,-6), B(3,-2)$ and $C(5,2)$ are the vertices of a $\triangle A B C$ and $A D$ is its median. Prove that the median AD divides $\triangle \mathrm{ABC}$ into two triangles of equal areas.

A [CBSE O.D. 2014] 5

